Частотный преобразователь: принцип работы и построение схемы

Схема преобразователя Довольно часто у многих радиолюбителей или просто хозяйственных людей возникает необходимость в регулировании частоты вращения трехфазного двигателя. Использовать для этого банальный регулятор мощности нет смысла, потому что он построен на принципе изменения напряжения, а ведь, как известно, двигатели переменного тока не хотят регулироваться таким способом, даже однофазные.

Обороты, конечно, будут изменяться, но только в небольшом и практически незаметном пределе, после чего при достижении нижнего порога, а при питании 220 В при напряжении 150 В, обороты и вовсе останавливаются. Если с вала необходимо получит еще и нормальный момент, например, при регулировании скорости движения конвейера или протяжной рейки, в зависимости к чему он подключен, то подойдет только частотный преобразователь.

Что такое частотное преобразование

Упрощенная схема инвертора преобразователя Под понятием частотное преобразование, а далее и частотный преобразователь, следует понимать целую систему, которая нечто делает. А именно преобразует частоту питающего обмотки асинхронного двигателя напряжения. То есть акцентируем ваше внимание на том, что здесь изменяется не напряжение, а именно его частота. В таком режиме управления момент на валу двигателя сохраняется при изменении его скорости вращения.

Но чтобы сделать преобразователь частоты своими руками, необходимо вспомнить конструкцию и возможные характеристики работы асинхронных двигателей. Более того, решая конкретно изготовить такое устройство, первым делом необходимо найти подходящий по параметрам двигатель, который справится с возлагаемой на него работой в составе готового комплекса.

Выбор двигателя

Для проектирования самодельного частотника сначала стоит вспомнить, что такое асинхронный двигатель и как он работает. Несинхронный двигатель или ДПТ представляет собой механическое устройство, состоящее из статора с обмотками возбуждения и ротора. Второй компонент может быть:

  • Сигналы на силовых ключах инвертора короткозамкнутым, то есть средние проводники соединены по торцам кольцами, а сами они толстые и короткие, из-за чего конструкция получила название «беличье колесо»;
  • фазным, ротор имеет несколько обмоток, которые присоединены к токосъемным кольцам, применяемым для отвода напряжения в режиме генератора.

Принцип действия двигателя очень прост и заключается во влияние создаваемого в статоре вращающегося магнитного поля на короткозамкнутый ротор, в котором возникает ЭДС. Из-за этого в роторе начинает протекать ток, что ведет к образованию сил, взаимодействующие с магнитным полем статора. При этом частота вращения ротора и магнитного поля неравны, оттого и название асинхронный двигатель.

Разумно предположить, что если изменить частоту питающего статор напряжения, то и измениться скорость вращения ротора. На деле оно так и есть, поэтому все серьезные компании используют именно частотные преобразователи для управления такими моторами. Когда проектируется схема частотного преобразователя для электродвигателя своими руками, следует учесть тип мотора и все его характеристики. В частности, мощность, число полюсов и максимальную скорость вращения. Скачать готовые схемы можно с интернет-журнала “Радиокот”. Там их представлено очень много.

Получение магнитного поля

Модели частотного преобразователяДля получения вращающегося магнитного поля трехфазного, необходимо через виток катушки на статоре пропустить ток с необходимой частотой, который будет определяться по формуле: iA = I m sinωt. В результате действия этого тока по оси витка начинает действовать МДС FA. Так как витки в статоре чередуются по фазам, то и пульсация будет иметь такой же характер, создавая общую пульсирующую силу F, являющеюся константой. Она определяется как корень из квадратов сил в двух витках, смещенных относительно друг друга под углом 90ºС.

В результате чего возникает вращение поля с угловой скоростью, выраженную формулой для каждого витка в отдельности: ω =2π f 1. Но для расчета скорости поля во всей машине необходимо учитывать общее количество пар полюсов, выраженное символом p. И тогда скорость поля будет равна: ω 0 =2π f 1 /р. Соответственно, можно высчитать и частоту вращения, выраженную в об/мин: n0 =60 f 1 /р.

Кроме этих данных, необходимо помнить, что характеристики будут отличаться от режима в холостом ходе, то есть при ω = ω 0, и при нагрузке, когда ω ≠ ω 0. А также было бы полезным вспомнить, что под нагрузкой возникает такое понятие, как скольжение, которое появляется из-за отставания ω от ω 0. И оно выражается как: s =( ω 0 – ω)/ ω 0. Это говорит о том, что при построении САУ с увеличением этой величины необходимо автоматически изменять частоту напряжения в обмотках, чтобы обеспечить стабильность скорости при различных нагрузках.

Промышленные частотные привода

Все промышленные частотники обеспечивают различные принципы регулирования скоростью и моментом на валу асинхронных двигателей за счет изменения не только частоты, но и сдвига фаз, времени нарастания управляющих импульсов, динамическим торможением и многими другими параметрами. При этом все это выполняется в автоматическом режиме без дополнительного участия извне. Поэтому промышленная схема частотного преобразователя для трехфазного двигателя состоит из следующих компонентов:

  • Принцип работы преобразователяЦентрального процессора, выполняющего роль формирователя задающих и управляющих импульсов.
  • Силовая часть: выпрямитель и одновременно блок управления, построенный на IGBT — модулях.
  • Блок ввода и вывода данных или просто интерфейс для взаимодействия с пользователем.
  • Преобразователь шины для работы с системой программного управления.

Трехфазный двигатель может быть оснащен датчиком, тогда требуется обратная связь. Датчик может быть оптическим, индуктивным или магнитным. В высоко оборотистых двигателях расчет скорости ведется программно на основании характеристик.

Плюсы использования частотных преобразователей

Недаром человек стал активно применять частотные преобразователи на всех видах предприятий и даже в быту, потому что они намного более экономичны, чем коллекторные двигатели и могут работать в таких условиях, в которых двигатель со щетками быстро выйдет из строя. Кроме всего этого, использование частотного преобразователя дало возможность заменить механические вариаторы с приводными системами, что позволило намного упростить конструкцию оборудования. А учитывая, что ДПТ при работе практически не требует ремонт, то использование ПЧ является просто идеальным решением.

Но следует понимать, что есть пределы регулирования, при которых принцип управления асинхронным двигателем также будет изменяться:

  • При регулировании скорости в диапазоне 16:1 и менее, необходимо применять использовать ПЧ, работающий по вольт — частотной характеристике.
  • Для регулирования в диапазоне 50:1 необходимо использовать бессенсорное векторное регулирование.
  • В больших диапазонах следует применять обратную связь с использованием датчиков или встроенного в ПЧ пид-регулятора.

В любом случае, когда двигатель планируется применять в тяжелых условиях работы, что обычно и бывает, то лучше использовать именно векторное регулирование.

Векторное и частотное регулирование

Преобразователи частотыЧтобы построить качественную систему САУ с управлением асинхронным двигателем, необходимо хорошо разбираться в понятиях, а именно в векторном регулировании или частотном регулировании.

Частотный принцип применяется в системах, где нет надобности жестко контролировать скорость, а важен создаваемый двигателем поток без значительной нагрузки. Но когда требуется с первого оборота обеспечить высокий момент и хорошее тяговое усилие, то следует использовать векторное управление.

Векторные САУ также применяются в следящих системах с небольшими скоростями подач. Например, в станках для подачи столов или шпиндельных суппортов. Здесь не только надо преодолеть инерцию станины, но и обеспечить необходимое усилие при обработке детали.

Проектируя частотник для трехфазного электродвигателя своими руками, необходимо учитывать тип нагрузки, потому что от этого будет зависеть и характеристика управления силовыми ключами для достижения необходимой мощности при минимальных потерях.

Техническая реализация ПЧ

Вот мы и подошли к построению блок-схемы управления асинхронным электродвигателем. И сразу стоит уверить, что практически все производители этого вида преобразователей используют одну и ту же блоку схему, которая может быть применена и вами для конструирования собственного преобразователя. И она состоит из следующих компонентов:

  • Мощность преобразователяНеуправляемого выпрямителя трехфазного 380 В или однофазного 220 В напряжения сети.
  • Шины постоянного тока со встроенным LC — фильтром, состоящей из набора конденсаторов, которые обеспечивают ее стабильный заряд и исключают пульсации при скачках в сети.
  • Инвертора напряжения, преобразующего постоянное промежуточное напряжение в переменное нужной частоты. Он оснащен ШИМ для качественного управления.
  • Асинхронного электродвигателя, которым и осуществляется управление.

Следует сказать, что производители долго шли к созданию идеальной ШИМ, с помощью которой можно было бы стабильно управлять двигателем. И только с появлением IGBT — модулей это стало возможным. Поэтому и для построения своего преобразователя рекомендуется использовать ключи с напряжением не менее 1200 В с учетом возможных пульсаций сети и с хорошим запасом по току. На рынке вполне можно отыскать транзисторы и модули до 100 и более А.

Упрощенная блок схема преобразователя будет выглядеть следующим образом:

  • Как выбрать частотный преобразовательВыпрямитель, его подключение выполняется по принципу одно или 2-фазной мостовой схеме. Он предназначен для преобразования переменного напряжения в постоянное, пригодное для дальнейшего преобразования частоты от 0 Гц до частоты сети. Промежуточный контур условно состоит из двух блоков:
  • Устройства плавного заряда шины, чтобы не повредит токоведущие линии при заряде конденсаторов. Оно получило название балластного сопротивления.
  • Блок конденсаторов – он же фильтр.

Расчетное напряжение промежуточного контура в √2 раз больше U N. После достижения на шине необходимого уровня постоянного напряжения резистор шунтируется контактной парой. Последний блок в схеме – инвертор. Это окончательный формирователь выходных импульсов, которые затем поступают на двигатель, обеспечивая его вращение с заданной скоростью.

Обобщенное строение силового модуля показано на следующем рисунке:

Какие есть виды преобразователяДля построения инвертора применяются высоко токовые транзисторы, работающие в чисто переключающем режиме. В процессе работы они сильно нагреваются, поэтому устанавливаются на больших радиаторах с большой площадью рассеивания тепла.

Для проектирования схемы управления инвертором, необходимо себе четко представить порок работы ключей. Для этого обратите внимание на рисунок ниже:

На нем представлены временные интервалы для каждого из ключей, установленных именно в таком порядке, как было показано на прошлом рисунке. То есть в фазе U работают транзисторы Т1 и Т4, в фазе V – Т3 и Т6 и так далее. Для каждой из обмоток двигателя свая пара IGBT. При построении ПЧ для маломощных моторов с небольшими токами можно использовать простые биполярные или полевые транзисторы.

На временной диаграмме видно, что в первый момент времени открываются транзисторы Т1, Т5 и Т6. Далее, транзистор Т1 и Т6 продолжают быть открытыми, в то время, как Т5 закрывается и открывается Т2 и так далее. Эта диаграмма полностью повторяет диаграмму напряжений в 3-фазной сети, но только импульсы имеют прямоугольную форму и имеют заданную контроллером частоту.

В результате получается своего рода циклическое переключение транзисторов, при этом ток в фазах получается сдвинут на 120º относительно друг друга. А для получения управляющего напряжения, состоящего из множества импульсов, в виде синусоидального сигнала с минимальным числом гармоник, пользуются отношением времени включения и выключения транзисторов.

Чтобы минимизировать потери в двигателе, которые обычно возникают при попытках регулирования за счет уменьшения напряжения на обмотках двигателя, прибегают к увеличению частоты.

Принцип регулирования скорости

Для изменения скорости вращения вала двигателя необходимо изменить частоту f 1, но делать это следует осторожно. Ведь необходимо сохранить ток намагничивания неизменным. Для поддержания этого баланса U 1 должны быть пропорционально f 1. но если баланс нарушен, то ток намагничивания будет либо уменьшаться, либо увеличиваться. Соответственно, поле будет ослабляться или перенасыщаться. Чтобы обеспечить это u / f -характеристику выбирают линейной до достижения угловой частоты. Она наступает тогда, когда напряжение на обмотках повышается до максимальной отметки.

Adblock
detector