Элемент Пельтье: характеристики, принцип работы и применение

Элемент ПельтьеВ 1834 году французский учёный-физик Жан Шарль Пельтье, исследуя воздействие электричества на проводники, обнаружил очень интересный эффект. Если пропускать ток через два разнородных проводника, находящихся в непосредственной близости друг от друга, то один из этих проводников начинает сильно греться, а второй, наоборот, сильно охлаждаться. Количество выделяемого и поглощаемого тепла, напрямую зависит от силы и направления электрического тока. Если поменять направление тока, то поменяются местами холодная и горячая стороны. Чуть позже этот феномен получил название эффекта Пельтье и был благополучно забыт из-за практической невостребованности на тот момент.

И лишь спустя сто с лишним лет, с расцветом полупроводниковой эры, появилась настоятельная необходимость в компактных, недорогих и эффективных охладителях. Так, в 60х годах 20 века появились первые полупроводниковые термоэлектрические модули, которые получили название элементы Пельтье.

Термоэлемент Пельтье

Термоэлемент Пельтье в физикеВ основе любого термоэлектрического модуля лежит тот факт, что разные проводники имеют разные уровни энергии электронов. Иными словами, один проводник можно представить как высокоэнергетическую область, второй проводник, как низкоэнергетическую область. При контакте двух токопроводящих материалов, во время пропускания через них электрического тока, электрону из низкоэнергетической области необходимо перейти в высокоэнергетическую область.

Этого не произойдет, если электрон не приобретёт необходимое количество энергии. В момент поглощения этой энергии электроном, происходит охлаждение места контакта двух проводников. Если поменять направление протекания тока, возникнет, наоборот, эффект нагревания места контакта.

Можно использовать любые проводники, но этот эффект становится физически заметным и значимым только в случае использования полупроводников. Например, при контактировании металлов, эффект Пельтье настолько незначителен, что практически незаметен на фоне омического нагрева.

Устройство модуля

Устройство модуля Термоэлектрический модуль (ТЭМ), независимо от своего размера и места применения состоит из разного количества, так называемых термопар. Термопара — это тот самый кирпичик, из которых строится любой ТЭМ. Она состоит из двух полупроводников различающихся типом проводимости. Как известно, существуют два типа проводимости p и n типа. Соответственно существует и два типа полупроводников. Два этих разнородных элемента соединяются в термопаре с помощью медного мостика. В качестве полупроводников применяют соли таких металлов, как висмут, теллур, селен или сурьма.

ТЭМ — совокупность подобных термопар, соединённых друг с другом последовательно. Все термопары располагаются между двух керамических пластин. Пластина Пельтье. Пластины изготовлены из нитрида или оксида алюминия. Непосредственно само количество термопар в одном элементе может варьировать в очень широких пределах, от нескольких штук, до нескольких сотен или тысяч.

Иными словами, элементы Пельтье могут быть абсолютно любой мощности, от сотых долей, до нескольких сот или тысяч ватт. Постоянный ток последовательно проходит через все термопары и в результате верхняя керамическая пластина охлаждается, а нижняя, наоборот, греется. Если поменять направление тока, то пластины поменяются местами, верхняя начнёт греться, а нижняя охлаждаться.

В работе элемента присутствует одна особенность, которую активно используют для усиления охлаждающей эффективности этого приспособления. Как известно, при пропускании тока через элемент Пельтье возникает разность температур между поверхностью, разогревающейся и поверхностью охлаждающейся. Так вот, если ту поверхность, что активно нагревается подвергнуть принудительному охлаждению. Например, с помощью специального кулера, то это приведёт к ещё более сильному охлаждению поверхности, то есть той, что охлаждается. При этом разница температур с окружающим воздухом может достигнуть нескольких десятков градусов.

Достоинства и недостатки

Как у любого технического устройства, у термоэлектрического модуля есть свои достоинства и свои недостатки:

  • Достоинства термоэлементаНебольшие размеры. А если быть, точнее, ТЭМ может быть любого размера, от микроскопического, до гигантского.
  • Отсутствие в конструкции движущихся элементов, что делает устройство абсолютно бесшумным в работе.
  • Отсутствие в конструкции жидкостных или газовых наполнителей, что делает устройство предельно простым как в устройстве, так и в работе.
  • В зависимости от направления тока, ТЭМ может быть как охлаждающим элементом, так и нагревающим.
  • Основным недостатком ТЭМа является его низкий коэффициент полезного действия, по сравнению с холодильными установками компрессорного типа, работающими на фреоне.

Проблема повышения КПД у ТЭМов упирается в неразрешимую пока, техническую головоломку. Свободные электроны обладают, по сути, двойной природой, что на практике проявляется и они одновременно являются переносчиками как электрического тока, так и тепловой энергии. Как следствие, высокоэффективный элемент Пельтье должен быть изготовлен из материала, обладающего одновременно двумя взаимоисключающими свойствами. Материал этот должен хорошо проводить электрический ток и плохо проводить тепло. Пока такого материала не существует в природе, но учёные активно работают в этом направлении.

Технические характеристики

Все термоэлектрические модули обладают соответствующими техническими характеристиками:

  • Технические характеристики Qmax — холодопроизводительность. Она вычисляется исходя из максимально допустимого тока и разности температур между противоположными поверхностями. Величина измеряется в Ваттах.
  • DTmax — максимальный температурный перепад между поверхностями элемента. Измеряется в градусах.
  • Imax — допустимая сила тока, которая необходима для возникновения максимального температурного перепада.
  • Umax — максимально допустимое напряжение.
  • Resistence — внутреннее сопротивление устройства.
  • COP (coefficient of perfomance) — коэффициент эффективности. Это и есть КПД элемента. Показывает отношение охлаждающей мощности, к потребляемой. У самых продвинутых моделей этот коэффициент чуть не дотягивает до 0.5. У более простых не превышает 0.2—0.3.

Применение ТЭМов

Несмотря на серьёзный недостаток присущий всем без исключения элементам Пельтье, а именно очень низкий КПД, эти устройства нашли довольно широкое применение как в науке и технике, так и в быту.

Термоэлектрические модули являются важными элементами конструкции таких устройств, как:

  • Применение термоэлементовМобильные холодильники. В частности, автохолодильники.
  • Переносные термогенераторы. Для получения электроэнергии в труднодоступных местах.
  • Системы охлаждения в современных компьютерах.
  • Автомобильные кондиционеры.
  • Кулеры как для охлаждения, так и для нагрева воды.
  • Осушители воздуха.
  • Лабораторные охлаждающие инкубаторы.

Элемент Пельтье в руках домашнего мастера

Нужно сразу оговориться, самостоятельное изготавливание термоэлектрического элемента занятие по меньшей мере бессмысленное и никому не нужное. Если только изготавливающий не является учеником седьмого класса и не закрепляет таким образом, полученные на уроках физики, знания.

Гораздо проще купить новый термоэлектрический элемент в соответствующем магазине. Благо стоят они недорого и недостатка в выборе конкретной модели не наблюдается. А кроме того, что в них нечему ломаться или изнашиваться, любой термоэлемент, снятый со старого компьютера или автомобильного кондиционера, не будет отличаться по своим техническим характеристикам от нового.

Наибольшей популярностью пользуется модель термоэлемента: TEC1—12706. Размеры этого устройства 40 на 40 миллиметров. Состоит он из 127 термопар, соединённых между собою последовательно. Рассчитан на ток в 5 А, при напряжении цепи 12 В. Стоит такой элемент в среднем от 200 до 300 рублей. Но можно найти и за сто, или, вообще, за так, если снять со старого компьютера или какого другого ненужного устройства.

Изготовить с помощью такого элемента можно, как минимум два очень интересных и полезных в хозяйстве устройства.

Как сделать холодильник своими руками

Производство портативных холодильников, в частности, для машин целиком основано на эффекте Пельтье. Для изготовления подобного устройства в домашних условиях понадобиться:

  • Термоэлемент марки TEC1—12706. Стоит 200 рублей в ближайшем магазине (специализированном).
  • Радиатор и вентилятор. Снимаются с отслужившего своё старого компьютера.
  • Контейнер. Любая ненужная ёмкость из пластика, металла или дерева. Снаружи и изнутри такая ёмкость оклеивается теплосберегающими пластинами из пенопласта или пенополистирола.

Термоэлектрический модуль встраивается в крышку контейнера. В этом случае поступление холода будет происходит сверху вниз, что приведёт к равномерному охлаждению ёмкости. Изнутри контейнера, в его крышку с помощью термопасты и крепёжных болтов прикрепляют радиатор.

Для того чтобы увеличить мощность будущего холодильного устройства, можно увеличить количество термоэлементов, до двух-трёх и более. В этом случае модули приклеиваются друг к другу, с соблюдением полярности. Иными словами, горячая сторона нижележащего элемента контактирует с холодной стороной вышележащего.

Снаружи на крышку крепится ещё один радиатор вместе с компьютерным кулером. В месте крепежа радиаторов должна быть хорошая термоизоляция между холодной — внутренней и горячей — внешней сторонами. Необходимо очень аккуратно стягивать верхний и нижний радиаторы крепёжными болтами, чтобы не треснули керамические пластины, располагающихся между ними термоэлементов.

Электричество подключается с помощью блока питания, который можно взять от старого компьютера.

Портативный термоэлектрогенератор

Портативный термоэлементТакая мини-электростанция может очень выручить туриста или охотника, когда в лесу сядут батареи всех электронных гаджетов. Очень романтично в этой ситуации взять несколько сухих щепок и шишек, развести небольшой костерок и с его помощью зарядить разряженные аккумуляторы, а заодно и поесть приготовить. Именно это позволяет сделать портативный термогенератор, построенный на термоэлементе.

Для постройки этого чудо-девайса необходимо наличие портативной походной печки, работающей на любом виде топлива. В крайнем случае сгодится даже небольшая свечка или таблетка сухого спирта.

В печке разводят огонь, а снаружи с помощью термопасты к ней крепится термоэлектрический модуль. Посредством проводов он подключается к преобразователю напряжения.

Величина получаемого тока напрямую будет зависеть от разницы температур между холодной и горячей сторонами термоэлемента. Для эффективной работы необходима разница между холодной и горячей поверхностью как минимум в 100 градусов.

В этом случае необходимо понимать, что максимальная температура ограничена температурой плавления припоя, с помощью которого изготовлен сам модуль. Поэтому для подобных устройств используют специальные термомодули, которые изготавливают с помощью специального тугоплавкого припоя. В обычных модулях температура плавления припоя составляет 150 градусов. В модулях тугоплавких, припой начинает плавиться при температуре 300 градусов.

Adblock
detector